Tilapia culture in trinidad and tobago: yet another update


THE DEVELOPMENT OF CORRELATIVE MICROSCOPY TECHNIQUES TO DEFINE MORPHOLOGY AND ULTRASTRUCTURE IN CHLORIDE CELLS OF NILE TILAPIA (



Download 1.98 Mb.
Page71/89
Date25.02.2021
Size1.98 Mb.
1   ...   67   68   69   70   71   72   73   74   ...   89
THE DEVELOPMENT OF CORRELATIVE MICROSCOPY TECHNIQUES TO DEFINE MORPHOLOGY AND ULTRASTRUCTURE IN CHLORIDE CELLS OF NILE TILAPIA (Oreochromis niloticus (L.)) YOLK-SAC LARVAE.

Fridman, S.1, Bron, J.E.1 and Rana, K.J.1

1 Institute of Aquaculture, University of Stirling, Scotland.

Abstract

The Nile tilapia, the predominant farmed tilapia species worldwide, displays an ability to thrive in low salinity waters not otherwise used for culture of conventional freshwater fish. The ability of early life stages to osmoregulate relies initially on chloride cells which are located on the body surface of larvae. These specialised cells are responsible for the trans-epithelial transport of ions, this being achieved using the transport protein Na+-K+-ATPase. In this study FluoroNanogold™ was used in combination with a Na+/K+-ATPase antibody on yolk-sac larvae of Nile tilapia that had been incubated and reared in brackish water. Chloride cells were detected directly by confocal scanning laser microscopy and subsequently by transmission electron microscopy. Scanning electron microscopy confirmed the appearance of the structure of the chloride cells on the surface of larvae. Results demonstrate that this integrated approach - used here for the first time on whole-mount fish specimens – offers valuable insight into the cellular localisation of Na+/K+-ATPase and morphology of chloride cells.






Share with your friends:
1   ...   67   68   69   70   71   72   73   74   ...   89




The database is protected by copyright ©essaydocs.org 2020
send message

    Main page