Surveys and Questionnaires in Research Excerpted from Survival Statistics

Download 177.22 Kb.
Size177.22 Kb.
1   2   3   4   5   6   7   8   9   10
What does significance really mean?
Many researchers get very excited when they have discovered a "significant" finding, without really understanding what it means. When a statistic is significant, it simply means that you are very sure that the statistic is reliable. It doesn't mean the finding is important.
For example, suppose we give 1,000 people an IQ test, and we ask if there is a significant difference between male and female scores. The mean score for males is 98 and the mean score for females is 100. We use an independent groups t-test and find that the difference is significant at the .001 level. The big question is, "So what?". The difference between 98 and 100 on an IQ test is a very small small, in fact, that its not even important.
Then why did the t-statistic come out significant? Because there was a large sample size. When you have a large sample size, very small differences will be detected as significant. This means that you are very sure that the difference is real (i.e., it didn't happen by fluke). It doesn't mean that the difference is large or important. If we had only given the IQ test to 25 people instead of 1,000, the two-point difference between males and females would not have been significant.
Significance is a statistical term that tells how sure you are that a difference or relationship exists. To say that a significant difference or relationship exists only tells half the story. We might be very sure that a relationship exists, but is it a strong, moderate, or weak relationship? After finding a significant relationship, it is important to evaluate its strength. Significant relationships can be strong or weak. Significant differences can be large or small. It just depends on your sample size.

Share with your friends:
1   2   3   4   5   6   7   8   9   10

The database is protected by copyright © 2020
send message

    Main page