Bibliography – stcse students‘ and Teachers‘ Conceptions and Science Education Full Version fv09. rtf / March 23, 2009



Download 4.57 Mb.
Page22/76
Date31.05.2016
Size4.57 Mb.
1   ...   18   19   20   21   22   23   24   25   ...   76

Ford, D. J. (2005). The challenges of observing geologically: Third graders' descriptions of rock and mineral properties. Science Education, 89(2), 276-295 // g6, ES.

Ford, D. J. (2006). Representations of science within children's trade books. Journal of Research in Science Teaching, 43(2), 214-235 // g1, TXT, CSC.

Ford, M. (2007). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92(3), 404-423 // g1, CSC, SCON.

Ford, M., & Wargo, B. (2007). Routines, roles, and responsibilities for aligning scientific and classroom practices. Science Education, 91(1), 133-157 // g8, CSC.

Ford, M. J. (2003). Representing and meaning in history and in classrooms: Developing symbols and conceptual organizations of free-fall motion. Science & Education, 12(1), 1-25 // g3, g7, P, M, FORCE.

Forissier, T., Clement, P. (2001). How to teach the notion of "biological identity"? In D. Psillos, Kariotoglou, P. , Tselfes, V. , Bisdikian, G. , Fassoulopoulos, G. , Hatzikraniotis, E. , Kallery, M. (Ed.), Proceedings of the Third International Conference on Science Education Research in the Knowledge Based Society, Vol. 1 (pp. 383-385). Thessaloniki, Greece: Aristotle University of Thessaloniki // g7,B,GENETICS.

Forissier, T., & Clément, P. (2003). Teaching 'biological identity' as genome/ environment interactions. Journal of Biological Education, 37(2), 85-90 // g8, B, GENETICS.

Forman, G. (1990). Representation and cognitive change in young children. Paper presented at the annual meeting of the American Education Research Association, Boston // g5.

Forman, G. (1990). The use of computer graphics and video replay to enhance the child's understanding of movement. Paper presented at the annual meeting of the American Education Research Association, Boston // g7,P,M.

Forster, P. (2004). Graphing in physics: Processes and sources of error in tertiary entrance examinations in Western Australia. Research in Science Education, 34(3), 239-266 // g5.

Forster, P. A. (2005). Alternative physics examination questions: Identification and explanation of different discriminating powers. Research in Science Education, 35(4), 395-423 // g5.

Fortin, C. (1991). Les representations des eleves sur l'evolution biologique. In A. Giordan, Martinand, J. L. , Souchon, C. (Ed.), Ecole et medias face aux defis de l'environnement. Actes des 13. journees int. sur la communication, l'ed. et la culture scient. et indust. (pp. 610-612). Chamonix: Centre Jean Franco // g6,B.

Fortin, C. (1996). Evolution: Unitary subject-matter in biology teaching. In A. Giordan, Girault, Y. (Ed.), The new learning models (pp. 109-118). Nice: Z' editions - les auteurs // g6,g7,B.

Fosnot, C. T. (1993). Rethinking science education: A defense of Piagetian constructivism. Journal of Research in Science Teaching, 30(9), 1189-1201 // g1.

Fourez, G. (1994). Constructivisme et justification thique. Revue des sciences de l' ducation, 20(1), 157-174 // g1.

Fowler, T. W., BouJaoude, S. B. (1987). Using hierarchial concept/proposition maps to plan instruction that addresses existing and potential student misunderstandings in science. In J. Novak (Ed.), Proceedings of the 2. Int. Seminar Misconceptions and Educational Strategies in Science and Mathematics, Vol. I (pp. 182-186). Ithaca: Cornell University // g1,g7,g9.

France, B. (1997). Models of biotechnology education. In M. Group (Ed.), Exploring models and modelling in science and technology education (pp. 228-244). Reading,UK: The University of Reading, Faculty of Education and Community Science // g7,B.

France, B. (2000). Biotechnology teaching models: What is their role in technology education? International Journal of Science Education, 22(9), 1027-1040 // g7,B,BIOTECH.

Francis, C., Boyes, E. , Qualter, A. , Stanisstreet, M. (1993). Ideas of elementary students about reducing the "Greenhouse effect". Science Education, 77(4), 375-392 // g6,STS.

Francis, R. G. (1987). Drawing together teaching methods and strategies into a model for Science Education. Research in Science Education, 17, 175-181 // g1,g7.

Francis, R. G., Hill, D. M. , Redden, M. G. (1991). Mathematics and science: A shared learning cycle and a common learning environment. School Science and Mathematics, 91(8), 339-343 // g9.

Francis, R. G., Hill, D. M. (1992). Conceptions of food and nutrition. The Australian Science Teachers Journal, 38(2), 65-69 // g4.

Franco, C., Colinvaux, D. (1992). Genetic epistemology, history of science and science education. Science & Education, 1(3), 255-271 // g1,g3.

Franco, C. (1992). History of science and psychogenesis: a comparative study on Galileo's free fall law and ideas of speed in the child. In S. Hills (Ed.), The history and philosophy of science in Science Education. Proceedings of the international conference on the history and philosophy of science and science teaching. Volume I (pp. 323-330). Kingston, Ontario: The Faculty of Education, Queens University // g3.

Franco, C., de Barros, H. L. , Colinvaux, D. , Krapas, S. , Queiroz, G. , Alves, F. (1999). From scientists´ and inventors´ minds to some scientific and technological products: Relationships between theories, models, mental models and conceptions. International Journal of Science Education, 21(3), 277-292 // g1,MM,g3.

Franklin, B. J., Good, R. G. (1993). Teacher use of knowledge of student held physical science concepts prior to instruction: a case study of six science teachers. Paper presented at the annual meeting of the National Association of Research in Science Teaching, Atlanta, 1-45 // g6,g8,P,M,T,O,E,CTL.

Franklin, S., Peat, M., & Lewis, A. (2003). Non-traditional interventions to stimulate discussion: The use of games and puzzles. Journal of Biological Education, 37(2), 79-84 // g7, B.

Fraser, B. J., Rennie, L. J. (1988). Learning in science qualitative and quantitative investigations in year 10 classrooms. Research in Science Education, 18, 227-235 // g8,CTL.

Fraser, B. J., Tobin, K. , Kahle, J. B. (1992). Factors which militate against learning science with understanding. The Australian Science Teachers Journal, 38(3), 63-66 // g8,CTL.

Fraser, B. J. (2007). Classroom learning environments. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 103-124). Mahwah: Lawrence Erlbaum Associates // g1, g5.

Fraser, K., Edwards, J. (1987). Concept maps as reflectors of conceptual understanding. In J. Novak (Ed.), Proceedings of the 2. Int. Seminar Misconceptions and Educational Strategies in Science and Mathematics, Vol. I (pp. 187-192). Ithaca: Cornell University // g5,g7.

Fraser, W. J., & Maguvhe, M. O. (2008). Teaching life science to blind and visually impaired learners. Journal of Biological Education, 42(2), 84-89 // g7, B.

Frederiksen, J. R., White, B. Y. , Gutwill, J. (1999). Dynamic mental models in learning science: The importance of constructing derivational linkages among models. Journal of Research in Science Teaching, 36(7), 806-836 // g7,P,E,CIRC.

Fredette, N. H., Clement, J. (1979). Textbook problems and the real world: Students' conceptions of a problem relating to an electrical circuit. Amherst: University of Massachusetts, Department of Physics and Astronomy // g6,P,E.

Fredette, N. H., Lochhead, J. (1980). Student conceptions of simple circuits. The Physics Teacher, 18(3), 194-198 // g6,P,E.

Fredette, N. H., Clement, J. (1981). Student misconceptions of an electric circuit: What do they mean ? Journal of College Science Teaching, 10(5), 280-285 // g6,P,E.

Fredette, N. H. (1985). The clinical interview: A tool for investigating student knowledge and ideas. In R. Duit, Jung, W. , Rhoeneck, C. von (Ed.), Aspects of understanding electricity (pp. 175-184). Kiel: Schmidt & Klaunig // g5.

Fredette, N. H. (1987). Student use of computers to self-evaluate data from introductory physics laboratories. In J. Novak (Ed.), Proceedings of the 2. Int. Seminar Misconceptions and Educational Strategies in Science and Mathematics, Vol. I (pp. 193-205). Ithaca: Cornell University // g7,P,M.

Freeman, L. A., Jessup, L. M. (2004). The power and benefits of concept mapping: measuring use, usefulness, ease of use, and satisfaction. International Journal of Science Education, 26(2), 151-169 // g5.

Freire, O., de Carvalho Neto, R. , Rocha, J. , Vasconcelos, M. , Socorro, M. , Anjos, E. (1995). Introducing quantum physics in secondary school. In F. Finley, Allchin, D. , Rhees, D. , Fifield, S. (Ed.), Proceedings. Third international history, philosophy, and scienceteaching conference (pp. 412-419). Minneapolis: University of Minnesota // g6,P,Q.

Freitag, P. K. (1993). Views of the learner and learning. In J. Novak (Ed.), Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Ithaca, New York: Cornell University (distributed electronically) // g8,CTL,ANA.

French, J. (1989). Accomplishing scientific instruction. In R. Millar (Ed.), Doing science: Images of science in Science Education (pp. 160-179). London, New York, Philadelphia: The Falmer Press // g5,g7,.

Frerichs, V. (1999). Schuelervorstellungen und wissenschaftliche Vorstellungen zu den Strukturen und Prozessen der Vererbung. Oldenburg: Didaktisches Zentrum, Universitaet Oldenburg // g6,B,GENETICS.

Freudenreich, M., Reinhold, P. (2003). Kognitive Wirkungen interaktiver Simulationen im Physikunterricht. In A. Pitton (Ed.), Außerschulisches Lernen in Physik und Chemie Band 23 (pp. 188-190). Münster: LIT // g7, P, M, MMEDIA.

Frey, K., Lang, M. (1973). Kognitionspsychologie und naturwissenschaftlicher Unterricht. Bern, Stuttgart, Wien: Huber // g1.

Frey, K., Pfundt, H. , Lehrke, M. , Bayrhuber, H. , Jenelten-Allkofer, C. (1982). Nutzung psychologischer Methoden und Erkenntnisse bei der Vorbereitung naturwissenschaftlicher Curricula. Kiel: IPN // g1,g5,g6,C.

Freyberg, P., Osborne, R. (1985). Assumptions about teaching and learning. In R. Osborne, Freyberg, P. (Ed.), Learning in science. The implications of children's science (pp. 82-90). Auckland: Heinemann // g1,g7.

Freyberg, P. (1985). Implications across the curriculum. In R. Osborne, Freyberg, P. (Ed.), Learning in science. The implications of children's science (pp. 125-135). Auckland: Heinemann // g1.

Fridrichsen, P. M. (2002). A substantive-level theory of secondary biology teachers' science teaching orientations. Paper presented at the Annual Meeting of the National Association for Research in Science, April 9, New Orleans, USA // g8,CTL,B.

Friedler, Y., Amir, R. , Tamir, P. (1987). High school students' difficulties in understanding osmosis. International Journal of Science Education, 9(5), 541-551 // g6,P,M.

Friedler, Y., Zohar, A. , Tamir, P. (1993). The effect of age and of learning on the ability to distinguish between anthropomorphic and teleological explanations. International Journal of Science Education, 15(4), 439-443 // g6,B.

Friedrichsen, P., Chaval, K., & Tuescher, D. (2007). Strategies and sources of support for beginning teachers of science and mathematics. School Science and Mathematics, 107(5), 169-181 // g8, CTL.

Friedrichsen, P. M., Munford, D., & Orgill, M. (2006). Brokering at the boundary: A prospective science teacher engages students in inquiry. Science Education, 90(3), 522-543 // g8, CTL, INQUIRY.

Friege, G., Lind, G. (2003). Allgemeine und fachspezifische Problemlösekompetenz. Zeitschrift für Didaktik der Naturwissenschaften, 9, 63-74 // g1, PROSOL, g6, P.

Friege, G., Lind, G. (2004). Eine Untersuchung zum Phänomen des trägen Wissens. In A. Pitton (Ed.), Chemie- und physikdidaktische Forschung und naturwissenschaftliche Bildung Band 24 (pp. 78-80). Münster: LIT Verlag // g1, EXNO, g7, P, M.

Friege, G., Mie, K. (2004). Wie löst ein Experte ein Black-Box-Experiment? Erste Ergebnisse einer empirischen Untersuchung. In A. Pitton (Ed.), Chemie- und physikdidaktische Forschung und naturwissenschaftliche Bildung Band 24 (pp. 69-71). Münster: LIT Verlag // g1, EXNO, g7, LAB.

Friege, G., & Lind, G. (2006). Types and qualities of knowledge and their relations to problem solving in physics. International Journal of Science and Mathematics Education, 4(3), 437-465 // g1, PROSOL, EXNO, g6, P.

Friege, G., Neugebauer, C., & Reinhold, P. (2005). Lernen mit Simulation und der Einfluss auf das Problemlösen in Physik. In A. Pitton (Ed.), Relevanz fachdidaktischer Forschungsergebnisse für die Lehrerbildung (Vol. 25, pp. 196-198). Münster: LIT Verlag // g7, P, PROSOL, MMEDIA.

Fritsch, L., Ehlert, M. (1990). Vorstellungen der Schueler vom Bau der Stoffe. Chemie in der Schule, 37(4), 118-127 // g6,P,AT,C.

Fritzsche, K. (1998). Grundbegriffe der Waermelehre aus Schuelervorstellungen entwickelt. Kiel: IPN Kiel // g6,g7,P,T,LPRO.

Frykholm, J., & Glasson, G. (2005). Connecting science and mathematics instruction: Pedagogical context knowledge for teachers. School Science and Mathematics, 105(3), 127-141 // g8, CTL, PCK.

Fuller, R. G. (1982). Solving physics problems - how do we do it ? Physics Today, 35(9), 43-47 // g1.

Furio, C. (1998). Difficulties in learning the concept of electric field. Science Education, 84(4), 511-526 // g6,P,E,FLD.

Furio, C., Guisasola, J. (1999). The teaching of the concept of electric field: mountain or hill. In M. Komorek, Behrendt, H. , Dahncke, H. , Duit, R. , Graeber, W. , Kross, A. (Ed.), Research in Science Education - Past, Present, and Future Vol.2 (pp. 375-377). Kiel: IPN Kiel // g7,P,E,ESTAT.

Furio, C., Azcona, R. , Guisasola, J. , Ratcliffe, M. (2000). Difficulties in teaching the concepts of 'amount of substance' and 'mole'. International Journal of Science Education, 22(12), 1285-1304 // g6,g8,C.

Furio, C., Calatayud, M. L. , Barcenas, L. , Padilla, O. M. (2000). Functional fixedness and functional reduction as common sense reasoning in chemical equilibrium and in geometry and polarity of molecules. Science Education, 84(5), 545-565 // g7,C.

Furió, C., Guisasola, J., Almudí, J. M., & Ceberio, M. (2003). Learning the electric field concept as oriented research activity. Science Education, 87(5), 640-662 // g7, P, FLD, AFF.

Furio Mas, C. J., Hernandez-Perez, J. (1987). Insilite des conceptions alternatives des eleves du primaire et du secondaire sur les gaz. In A. Giordan, Martinand, J. L. (Ed.), Modeles et simulation. Actes des 9. journees int. sur l'ed. scient (pp. 345-350). Chamonix: Centre Jean Franco // g6,P,AT.

Furio Mas, C. J., Hernandez, J. (1987). Parallels between adolescents' conception of gases and the history of chemistry. Journal of Chemical Education, 64(7), 616-618 // g3,g6,P,M,C.

Furío-Más, C., Calatayud, M. L., Guisasola, J., & Furío-Gómez, C. (2005). How are the concepts and theories of acid-base reactions presented? Chemistry in textbooks and as presented by teachers. International Journal of Science Education, 27(11), 1337-1358 // g7, C, TXT, CSC, g8.

Furner, J. M., & Kumar, D. D. (2007). The mathematics and science intergration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science and Technology Education, 3(3), 185-189 // g1.

Furnham, A. (1992). Lay understanding of science: young people and adults' ideas of scientific concepts. Studies in Science Education, 20, 29-64 // g1.

Furtak, E. M. (2006). The problem with answers: An exploration of guided scientific inquiry teaching. Science Education, 90(3), 453-467 // g8, CTL, INQUIRY.

Furtak, E. M., & Ruiz-Primo, M. A. (2008). Making students' thinking explicit in writing and discussion: An analysis of formative assessment prompts. Science Education, 92(5), 799-824 // g5, g6, P, M, BUOY.

Furuness, L. K. B. (1993). The application of "misconception" research experiences in teacher education: Integrating misconception research into the classroom. In J. Novak (Ed.), Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Ithaca, New York: Cornell University (distributed electronically) // g9.

Furuta, T. (2000). The impact of generating spontaneous descriptions on mental model development. Journal of Science Education and Technology, 9(3), 247-256 // g1, MM, g7, GC.

Furuya, K. (1993). A study on the teaching strategy of force and motion. In J. Novak (Ed.), Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Ithaca, New York: Cornell University (distributed electronically) // g7,P,M.

Fuschini, E., Grimellini-Tomasini, N. , Pecori Balandi, B. (1985). Students' frameworks in mechanics: A study of freshman. In P. L. Lijnse (Ed.), The many faces of teaching and learning mechanics. Conference on physics education (pp. 240-247). Utrecht: GIREP/SVO/UNESCO // g6,P,M.

Fusco, D., Barton, A. C. (2001). Representing student achievements in science. Journal of Research in Science Teaching, 38(3), 337-354 // g1.

Fuss, S., Rhoeneck, C. v. (2001). Einfluss sozialer Faktoren auf motivationale und emotionale Aspekte des Lernens im Fach Physik: Erzeihungsverhalten der Eltern und pädagogisches Verhalten des Lehrers aus Schülersicht. Zeitschrift fuer Didaktik der Naturwissenschaften, 7, 167-176 // g7,LAB,MMEDIA.

Fysh, R., Lucas, K. (1998). Science and religion: Acknowledging student beliefs. Australian Science Teachers' Journal, 44(2), 60-68 // g6,CSC.

Gabel, D. (1998). Action research phase one: Determining students' understanding of simple chemistry concepts for use in instruction. Paper presented at the annual meeting of NARST, San Diego, 1998, 1-27 // g6,C.

Gabel, D. (1998). The complexity of chemistry and implications for teaching. In B. J. Fraser, Tobin, K. G. (Ed.), International handbook of Science Education, Part 1 (pp. 233-248). Dordrecht, Netherlands: Kluwer Academic Press // g7,C,STS.

Gabel, D. (2000). Theory-based teaching strategies for conceptual understanding of chemistry. Educación Química, 11(2), 236-243 // g1,COSC,SCON,g7,C.

Gabel, D. L., Sherwood, R. (1980). The effect of student manipulation of molecular models on chemistry achievement according to Piagetian level. Journal of Research in Science Teaching, 17(1), 75-81 // g6,C.

Gabel, D. L., Samuel, K. V. , Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695-697 // g6,P,AT.

Gabel, D. L. (1993). Use of the particle nature of matter in developing conceptual understanding. Journal of Chemical Education, 70(3), 193-194 // g6,C,AT.

Gabel, D. L., Bunce, D.M. (1994). Research on problem solving: Chemistry. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 301-326). New York: Macmillan Publishing Company // g6,C,PROSOL.

Gado, I. (2005). Determinants of K-2 school teachers' orientation towards inquiry-based science activities: A mixed method study. International Journal of Science and Mathematics Education, 3(4), 511-539 // g8, CTL, AFF, INQUIRY.

Gagliardi, M., Grimelli-Tomasini, N. , Pecori, B. (1999). A challenge for lifelong science understanding. The role of "lab work" in primary school science. In J. Leach, Paulsen, A. C. (Ed.), Practical Work in Science Education (pp. 210-228). Dordrecht, The Netherlands: Kluwer // g7,P,M,FORCE,CTL,LAB.

Gagliardi, R., Mosconi Bernadini, P. (1988). Education a l'environnement: Utilisation des representations des eleves des ecoles italiennes pour la preparation d'un curriculum sur l'ecologie. In A. Giordan, Martinand, J. L. (Ed.), Communication, education et culture scientifiques et industrielles. Dixiemes Journees Internationales sur l'Education Scientifique (pp. 521-527). Paris: Dixiemes Journees Internationales sur l`Education Scientifique // g6.

Gagliardi, R., Mosconi Bernadini, P. , Bocciola, M. T. , Strubsberg, S. , Simeone, R. , Simeone, S. (1988). Nous ne sommes pas des petits ballons les modeles spontanes des eleves de l'ecole italienne sur la cellule. In A. Giordan, Martinand, J. L. (Ed.), Communication, education et culture scientifiques et industrielles. Dixiemes Journees Internationales sur l'Education Scientifique (pp. 209-213). Paris: Dixiemes Journees Internationales sur l`Education Scientifique // g6,B.

Gagliardi, R., Bernardini Mosconi, P. , Barbieri, G. , Ungaro, B. , Camilluci, E. , Minutti, M. , Paganni, G. (1991). Analyse des conceptions sur le rapport homme - environnement de eleves de lycees de la lombardie. In A. Giordan, Martinand, J. L. , Souchon, C. (Ed.), Ecole et medias face aux defis de l'environnement. Actes des 13. journees int. sur la communication, l'ed. et la culture scient. et indust. (pp. 571-575). Chamonix: Centre Jean Franco // g6,STS.

Gaia, M. (2001). Web-based in-service teachers training. In R. Pinto, Surinach, S. (Ed.), Physics Teacher Education Beyond 2000 (pp. 697-700). Paris: Elsevier // g9.

Gaigher, E., Rogan, J. M., & Braun, M. W. H. (2007). Exploring the development of conceptual understanding through structured problem-solving in physics. International Journal of Science Education, 29(9), 1089-1110 // g7, P, PROSOL.

Gair, J., Stancliffe, D. T. (1988). Talking about toys: an investigation of children's ideas about force and energy. Research in Science and Technological Education, 6(2), 167-180 // g5,g6,P,M,EN,GEN.

Gais, B. (2005). Assessing characteristics of teacher and student actions during instructional talks in primary science classrooms by means of video-analysis. In H. E. Fischer (Ed.), Developing standards in research on science education (pp. 117-123). London: Taylor & Francis Group // gp, g8, CTL, VIDEO.

Galangau-Querat, F. (1990). Les representations de la theorie de l'evolution. In A. Giordan, Martinand, J. L. , Souchon, C. (Ed.), Actes JIES XII (pp. 309-314). Chamonix: Centre Jean Franco // g6,B.

Gale, C. I. (1993). The influence of microcomputer-based labs on children's conceptions of temperature and temperature change. In J. Novak (Ed.), Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Ithaca, New York: Cornell University (distributed electronically) // g7,P,T.

Galili, I., Bendall, S. , Goldberg, F. M. (1993). The effects of prior knowledge and instruction on understanding image formation. Journal of Research in Science Teaching, 30(3), 271-301 // g6,P,O,.

Galili, I. (1993). Perplexity in the field concept in teaching-learning aspect. In J. Novak (Ed.), Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Ithaca, New York: Cornell University (distributed electronically) // g6,FLD.

Galili, I. (1993). Weight and gravitation are different concepts. In J. Novak (Ed.), Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Ithaca, New York: Cornell University (distributed electronically) // g6,P,M.

Galili, I. (1993). Weight and gravity: Teachers' ambiguity and students' confusion about the concepts. International Journal of Science Education, 15(2), 149-162 // g6,P,M.

Galili, I. (1995). Interpretation of students' understanding of the concept of weightlessness. Research in Science Education, 25(1), 51-74 // g6,P,M,GRAVITY,.



Share with your friends:
1   ...   18   19   20   21   22   23   24   25   ...   76




The database is protected by copyright ©essaydocs.org 2020
send message

    Main page