Geotechnical Consulting Board Threadlines of Geotechnical and Engineering Geology firms in the Greater Los Angeles Metro-Southern California Area

Download 0.99 Mb.
Date conversion16.05.2016
Size0.99 Mb.
1   ...   11   12   13   14   15   16   17   18   ...   25

Ed A. Elavatorski was the first Santa Barbra County Geologist, in 1964-65, and continued providing those services as an independent consultant until Ray M. Coudray, CEG (1927-2002) became the County’s first full-time geologist in 1973, within the Public Works Department (where he remained until the late 1990s). Wendell L. Nichols, PE of the Public Works Dept. also reviewed soils reports in the 1970s. Imelda A. Cragin, CHG was the reviewing hydrogeologist for the Solid Waste & Utilities Division of the Public Works Department during the 1990s and 2000s. Brian Baca, CEG, CHG was the Santa Barbara County Planning Department geologist from 1989-2005. After he departed, the County began using Fugro-West on a contractual basis for geologic peer-review. In the 2000s the City of Santa Barbara used Frank J. Kenton, CEG of Santa Paula as their geologic peer reviewer, while the County used Chris Sexton, CEG, of Southwestern Engineering Geology. In 2009 Santa Barbara County began using Chris Sexton‘s firm, GeoDynamics, Inc. (GDI), of Thousand Oaks as their geologic peer reviewer. GDI also provides peer review services for a number of municipalities in west Los Angeles and Ventura Counties.
San Luis Obispo County

Lew Rosenberg, CEG (BS ’84 New Mexico Tech; MS ’93 SJSU) served as the County Geologist for the San Luis Obispo County Planning and Building Department, between 2002–07. Previous to this he had worked for Nordmo, Earth Systems, and Staal, Gardner & Dunne. In 2005 Rosenberg prepared the SLO County Guidelines for Engineering Geology Reports, which were modified in 2013 by his successor, Brian Papurello, CEG (BS Geol 1986 SDSU), who currently serves as the SLO County Geologist.
Riverside County

During the 1980s and ‘90s Riverside County Planning Department employed Steve Kupferman, CEG, CHG (BA Geol 1971 CSUF) as their Chief Engineering Geologist. He served as Riverside’s County’s point-person during the contentious ground fissuring studies in the Murrieta-Temecula area in the late 1980s. In the early 2000s Kupferman moved to the Bureau of Land Management as Geologist and Supervisory Physical Scientist, and was succeeded by David L. Jones, CEG (BS Geol 1984; MS 1988 UCR).

San Bernadino County

In November 1984 San Bernardino County established a County Engineering Geologsist position responsible for geologic investigations and reviews relative to seismic safety, erosion/sediment control; reviews of new mining operations or expansions of existing operations relative to slope stability, soil erosion, sediment control, and mining reclamation, etc. John C. Bowman, Jr., CEG served as the first County Geologist, after a 30-year career with the Army Corps of Engineers. The County then employed several consultants on a part-time basis for many years. From 2006-12 George H. Kenline, CEG, CHG (BS Geol 1992 SDSU) held the full-time postion, and since 2012, has continued supporting the County on a case-by-case basis.

Notable Legislation, Inventions, and Associations instrumental in Development of the Geotechnical/Geological Standard of Practice
Establishment of State Geological Survey (1860)

In April 1860 the State Legislature passed an act creating a State Geological Survey and the Office of the State Geologist, naming Josiah Dwight Whitney as the first state geologist. Whitney endeavored to construct an accurate and complete survey of the State’s geologic resources, a Herculean task which occupied the succeeding five years. In 1865 he published a 97-page account (Geology of California, v. 1, part 1, Geology of the Coast Ranges: Geological Survey of California) that included initial descriptions of the formations surrounding Mt. Diablo.

The State Mining Bureau was created by legislation in 1880 absorbed the Old State Geological Survey. This was, in turn, succeeded by the Division of Mines and Mining, headed by a State Mineralogist, and contained within the Department of Natural Resources, with headquarters in the San Francisco Ferry Building. A Petroleum Department was established in 1915, which eventually became the Division of Oil & Gas. In October 1961 the agency’s name was changed to the Division of Mines & Geology in a reorganization of the newly created Department of Conservation. A brief history of the agency is contained in the December 1961 issue of Mineral Information Service (v. 14:12), the precursor publication of California Geology. The agency moved its headquarters from the Ferry Building in San Francisco to Sacramento in 1970. CDMG’s name was changed to the California Geological Survey (CGS) in 2002.
USGS 15-minute quadrangles (1893-1944)

The U.S. Geological Survey (USGS) began systematic topographic mapping of northern California in the mid-1890s, using plane tables. The scales were between 1:62,500 (about an inch to the mile) and 1:125,000 (about 2 inches to a mile). 15-minute series quadrangles were published of inhabited areas, such as the coastal plains, while 30-minute maps covered less-populated areas, such as the Sacramento Valley and Delta, and mountainous terrain within the Coast Ranges.

The 15-minute series maps were released between 1893 and 1944. Most of these show the original position of water courses and wetlands around the turn of the Century, and as urban areas developed, new editions were published, between 1916 and 1944. The last series of 15-minute quads were produced during the Second World War (1941-45), and omit details within military reservations, such as Alameda Naval Air Station and the Oakland Army Base. These maps were also replicated as base maps for other products, such as mining, soil science and water resources studies.
Establishment of the Bureau of Public Roads (1893-1919)

The U.S. Office of Road Inquiry was established with the Department of Agriculture in October 1893, naming General Roy Stone as its first Special Agent and Engineer. The first ‘object lesson highway’ demonstration project was constructed in New Jersey in 1897. In 1903 Congress tripled the agency’s budget, changing its name to the Office of Public Roads Inquiries and appointing Martin Dodge as the new Director. He divided the USA into four geographic divisions with a special agent in charge of each. In 1905 the agency was enlarged 67% and renamed the U.S. Office of Public Roads, with Logan W. Page as its new director. Under Page’s leadership a Division of Highway Bridges & Culverts was formed in 1910, the American Association of State Highway Officials (now AASHTO) was established in 1914. The agency’s name became the U.S. Bureau of Public Roads in 1915, and the following witnessed passage of the Federal-Aid Road Act of 1916, establishing the financing of highways using 50% federal and 50% state funds. In 1918 the agency established the Bureau of Public Roads Experimental Farm in Arlington, VA to measure impact forces of various wheel loads. The agency began published the journal Public Roads in May 1918. When Page retired in 1919 he was replaced by Thomas H. McDonald, an almost legendary figure who led the agency for the next 34 years, until 1953. From the late 1920s onward the importance of soil mechanics theory to pavement design and construction became increasingly appreciated, and most of the pre-1940 research in soil mechanics was geared towards improving pavement design.

The agency was renamed the U.S. Public Roads Administration in 1939, under the Federal Works Agency. When that agency was shut down in 1949, its name reverted to the Bureau of Public Roads and it was placed within the Department of Commerce. This was superseded by the establishment of the Federal Highway Administration and the new Department of Transportation in October 1966, which became operational in April 1967.
Establishment of Bureau of Soils (1901)

In 1894 the Division of Agricultural Soils was created in the Weather Bureau of the Department of Agriculture. With the inception of National Cooperative Soil Survey efforts, in 1899 the name changed to the Division of Soils, with a marked increase in funding. The first four surveys focused on portions of Maryland, Connecticut, the Salt Lake Valley of Utah, and the Pecos River Valley of New Mexico. These early efforts were focused on geology/geography and chemistry, with little or no input from agronomists.

In 1901 the Bureau of Soils was established with the USDA. In that era soil texture was the principal soil characteristic described in maps and reports, but soil series were soon established as groupings of distinctive soil types. Other characteristics, such as soil color, organic content, soil structure, drainage, erodibility, and nature of subsoil were gradually added to studies over the following decades. Some of these included soil provinces with their respective soil series where dominant depositional provinces were recognized, such as glacial, aeolian, alluvial etc. Whenever USGS topographic sheets were available soil maps were overlain on these. Most of these early surveys were published at a scale Work for soil surveys was done at a mapping scale 1 inch to the mile. In other cases early soil surveys were made using plane table and alidade surveys to develop their own base maps. Gradually the scale increased until, by 1960, it was pretty well standardized at 1:12000 or 1:24000.

Some of the earliest Bureau of Soils reports in the greater Los Angeles area include: Soil Survey of the Los Angeles Area, California by Louis Mesmer (1904), which included the first color maps of the soil types and alkali content of the coastal plains and wetlands, from Bolsa Chica to Santa Monica, at a scale of 1:62,500 (an inch to a mile). More detailed studies arrived in the following decade, such as: Soil Survey of the Riverside Area (1915), Pasadena Area (1915); San Fernando Area (1915), Los Angeles County (1915), Anaheim Area (1916), and the Reconnaissance Soil Survey of the San Diego Region in 1915. Two of the most oft-cited surveys are: J. W. Nelson’s Soil Survey of the Los Angeles Area in 1919 (CA Ag Exp Sta, Wash DC, 78 p.), and Reconnaissance Soil Survey of the Central Southern Area (2/3 of LA County, all of Orange County and western portions of Riverside and San Bernardino Counties) in 1921 by J.E. Dunn, L.C. Holmes, A.T. Strahorn, and J.E. Guernsey. Many of these older reports are now available online.

First Sheepsfoot compactor (1902-23)

The first sheepsfoot roller was built in Los Angeles in 1902, where it was marketed as the “Petrolithic Paving Tamper.” The roller was patented by John W. Fitzgerald in 1906, who worked for Walter and Harbert Gillette, owners of the Petrolithic Paving Co. of Los Angeles, and it was built by the Killefer Manufacturing Co. The roller employed a three-foot diameter log studded with railroad spikes protruding 7 inches, distributed so the spikes were staggered in alternate rows. This layout was soon modified to increase weight and efficiency, initially by increasing its length to 8 ft. The roller’s weight was then increased to about 5000 lbs by filling them with sand and water (drained when moved). The 7-in spikes were enlarged to a contact of area of 4 sq inches. This increased the load bearing on each spike to 300 lbs, or about 75 psi contact pressure. Production models were modified with a counter-balanced tow frame and hemispherical fender, and marketed nationally as the “Fitzgerald Roller.” The number of spikes was reduced to either 10 or 11 per row, to bring the contact pressure up to 100 psi.

The “Petrolithic Paving Tamper” roller was used in Santa Monica, Los Angeles, and Pasadena to provide an inexpensive means of paving public streets founded on expansive soils, but it proved unsuccessful. It was first used to compact an embankment dam by Bent Bros Construction in El Segundo, CA in 1912. Thoughtful imitations soon appeared, and when the patent expired in 1923, it was not renewed.
First use of the term “geotechnical” (1913)

In 1913 a “Geotechnical Commission of the Swedish State Railways” was appointed, chaired by Wolmar Fellenius, a professor of civil engineering at the Royal Institute of Technology in Stockholm. That commission studied a number of slope stability and bulkhead failures that had impacted the Swedish Railway system and issued a report in 1922 that was circulated in the United States, through ASCE’s Special Committee to Codify Present Practice on the Bearing Value of Soils for Foundations (reported on pages 715-16 of the December 1922 ASCE Proceedings). The term “geotechnical” was eventually adopted by soils and foundations engineers world-wide, to better describe the many faceted aspects of their profession, which involved soils, rock, water, and organic matter.

Dam Safety Acts of 1915 and 1917

In 1915 the California legislature passed its first dam safety legislation, which required all plans for dams and reservoirs to be submitted to the State Engineer for approval, but the act provided no penalty for failure to comply. In August 1916 the State Reclamation Board issued a report recommending that the State Engineer regulate all storage reservoirs. No further action was taken by the legislature until after January 1916 floods in Southern California. In 1917 a new dam safety act was enacted in the wake of public outcry following the failures of the Lower Otay and Sweetwater Dams in San Diego County during the floods of January 1916. The 1917 act granted the State Engineer authority over all dams > 10 feet high or which impound > 9 acre acre-ft (3 million gallons), with exception of: 1) dams for mining debris constructed by the California Debris Commission; 2) dams constructed by municipal corporations maintaining their own engineering departments (such as Los Angeles BWWS); and 3) dams and reservoirs that are part of water systems regulated by the State’s new Public Utilities Act.

That same year (1917) the State Railroad Commission was given authority over all dams owned by public utilities. The railroad commission exercised some oversight on 46 of 140 dams built in California between 1917-1929. Municipal water agencies, such as publicly-owned agencies and districts, were exempt from State overview (until the 1929 legislation). From 1917-29 the State Engineer was given authority to review plans for dams prepared by irrigation districts, private companies and individuals. In 1920 the Federal Power Commission began supervising dams for power projects involving the public domain.
ASCE Special Committee to Codify Present Practice on the Bearing Value of Soils for Foundations (1915-26)

In 1915 a Committee to Codify Present Practice on the Bearing Value of Soils for Foundations was formed by the American Society of Civil Engineers, chaired by Robert A. Cummings (1866-1962), Consulting Engineer from Pittsburgh, who founded the Cummings Structural Concrete Co. in 1884, and was an early proponent of reinforced concrete construction. Another member of the committee was famed sanitary engineer and hydrologist Allen Hazen (1869-1930). The committee solicited input from practitioners across the nation and published annual reports of up to 40 pages in length in the ASCE Proceedings between 1916-26 (Cummings served as a Director of ASCE from 1914-20 and as Vice President in 1920 and ’21). These empirical values became industry standards until the more rigorous methods of assessing bearing capacity of soils were developed by G.G. Myerhoff between 1950-55.

Highway Research Board (1920)

The Highway Research Board (HRB) was organized on November 11, 1920 as an agency of the Division of Engineering & Industrial Research, one of eight divisions of the National Research Council, which had been established in 1916, shortly before America’s entry into the First World War. The HRB was intended as a cooperative organization between the “highway technologists” of America, in support of the U.S. Bureau of Public Roads, state highway agencies, and a the few academic researchers beginning to engage in practical issues related to pavement design. The HRB was intended to encourage research and provide a national clearinghouse and correlation service for research and information on highway administration and technology. The expansive adobe clay soils in California created a very real need for highways that could withstand large seasonal fluctuations in soil moisture content, which catapulted California to the top of the emerging science associated with pavement design during the 1920s. From these efforts to understand and characterize subgrade materials came the recognition and appreciation of the emerging field of soil mechanics.

The establishment of the HRB soon led to extensive track tests at Columbia Steel Mills in Pittsburgh, CA, a cooperative project of the California Division of Highways of the State Department of Public Works, the U.S. Bureau of Public Roads, and several others. These tests led to the development of R-values to characterize pavement subgrade materials (in 1927), and the first subgrade compaction test standard (California Test Method 217 in 1929), which had widespread influence, nationally. More extensive tests using larger construction equipment was carried out during the Second World War at Stockton Army Airfield. This led to the development of flexible pavement design methodologies which dominated the post-war transportation sector, and the Modified Proctor Compaction test (AASHTO T180), for airfield runways (in 1945), which was eventually adopted by ASTM in as Test No D-1557 in 1958. This became the statewide standard in the 1985 Edition of the Uniform Building Code and the 1986 California Building Code, when UBC Standard 70-1 (introduced in 1964) was eliminated.
Early publications on mitigation of landslides (1920)

In 1920 Halbert P. Gillette of Chicago, IL and San Marino, CA, Editor of the serial journal Engineering and Contracting, published a detailed review of landslides and the various methods employed to mitigate their dangers in Chapter XXII Slips and Slides of his text Earthwork and Its Costs: A handbook of earth excavation, published by McGraw-Hill. It included 51 pages of text with numerous ink drawings, and a detailed bibliography of engineering literature pertaining to the study of landslides and their mitigation up toi that time (pre-1920). Gillette spent the winters in the Los Angeles area, and his younger brother Walter was a contractor in Los Angeles, with whom he invented the sheepsfoot roller in 1905 (see previous description of “The First Sheepsfoot Compactor, 1902-03,” above).

Differing Site Conditions Clause introduced (1921)

The first standardized “changed conditions” clause was developed by the Interdepartmental Board of Contracts and Adjustments on November 22, 1921 by the U.S. Bureau of the Budget. The new clause was intended to provide a contractual basis for contractors that encountered site conditions that were more adverse than those indicated in the construction contract. The changed conditions clause was thereafter included in a standard form of general conditions for construction contracts issued after August 20, 1926. To this day, Federal Regulations mandate its use in U.S. Government contracts. This clause was subsequently adopted in the standard contract documents sponsored by the Engineers Joint Contract Documents Committee of ACEC, ASCE, and NSPE; the AIA, ASCE in collaboration with the Associated General Contractors of America; AASHTO, and numerous state and municipal agencies. In 1968 the term “changed conditions” was revised to “differing site conditions,” commonly referred to as the “DSC clause.”

First use of mechanical compaction on embankment dams (1920s)

The first earth embankments compacted with sheepsfoot rollers were the Lake Henshaw Dam in 1920-23 for the Vista Irrigation District in San Diego County. This was followed in 1926 by Philbrook Dam for Pacific Gas & Electric Co. in the northern Sierras by R.G. Letourneau, and the Puddingstone Dam for the Los Angeles County Flood Control District in 1925-27, using a new roller patented by contractor H.W. Rohl that employed ball-shaped heads. The first earth dam compacted by sheepsfoot roller for a federal agency was Echo Dam in Utah for the Bureau of Reclamation in 1928. The sheepsfoot roller’s narrow spikes induced kneading compaction, critical for densifying clayey soils.

USGS/Los Angeles County 6-minute topographic quadrangles (1923-45)

In the early 1920s Los Angeles County contracted with USGS for a special series of 6-minute 1:24,000 (1" = 2,000 feet) scale topographic maps, covering the entire county. 113 quadrangles were published between 1923 and 1945, with contour intervals of 5 and 25 feet. The 5 feet contours were used in valleys and channel areas with low topographic relief, while the 25 feet contours were used in steeper terrain. These were plane-table derived topographic map products produced by the USGS and remain the best pre-development record of Los Angeles County, especially on alluvial fans, old channels, and within inland valleys. They are available from a number of sources, including the UCLA Map Library, the Huntington Library, the California Geological Survey Regional Office, and other college map collections (including the Map Library at U.C. Berkeley, which has a complete collection). Many of the established consultants in southern California also maintain private collections.

Development of the Uniform Building Code (1925-27)

The Uniform Building Code came about as a result of the Magnitude 6.3 Santa Barbara earthquake of June 25, 1925. This quake caused $6 million in damage to a city with only 30,000 people. The quake also came on the heels of the Great Kanto Earthquake of 1923 (M 7.9), which burned much of Tokyo to the ground and killed 143,000 people. In the wake of the terrible losses suffered in Santa Barbara, the nation’s largest insurers asked the Seismological Society of America (SSA) to provide future seismic risk assessments. The Board of Fire Underwriters of the Pacific funded several research projects aimed at assessing the earthquake hazard risks for various building types, making unreinforced masonry structures virtually uninsurable. When these assessments were released, they were so alarming that most lending institutions refused to invest in any further construction in the Los Angeles Area.

This led to a crisis involving the California State Chamber of Commerce, the California Development Association, the Los Angeles Chamber of Commerce, and SSA. SSA officials met with local governments and encouraged them to consider the adoption of seismic design tenants in their building codes, while the Los Angeles Chamber of Commerce hired retired USGS geologist R.T. Hill to debunk and discredit everything SSA President, Stanford Geology Professor Bailey Willis (also a retired USGS geologist) had to say about increased seismic risk in southern California.

In mid-October 1925 the Pacific Coast Building Officials Conference (PCBOC) convened in Los Angeles and hammered out a new Uniform Building Code (UBC), which was published by PCBOC. The primary purpose of the PCBOC was to establish regulations and standards for building safety. In March 1956 the PCBOC was conjoined with several other building code conferences to form the much larger International Conference of Building Officials, known as ICBO. While ICBO had no legal authority to create laws, most cities in the western United States adopted ICBO standards after 1956. Revised editions of this code were published approximately every 3 years, up through 1997.

From 1927-94 PCBOC/ICBO was headquartered in Los Angeles and from 1956, in Whittier. During the late 1950s and throughout the 1960s ASCE, CCCE, AEG, and ICBO formed numerous joint committees to explore the establishment of suitable standards for foundation engineering, grading and excavation. These consultations resulted in the establishment of Expansion Index Test (UBC Test 29-2/18-2), adopted in 1967; and the UBC [compaction] Test Standard 70-1, adopted in 1967 (and discarded in 1985).

1   ...   11   12   13   14   15   16   17   18   ...   25

The database is protected by copyright © 2016
send message

    Main page